387 research outputs found

    Dynamic Deformation of Clamped Circular Plates Subjected to Confined Blast Loading

    Get PDF
    In this paper, the dynamic deformation of thin metal circular plates subjected to confined blast loading was studied using high-speed three-dimensional Digital Image Correlation (3D DIC). A small-scale confined cylinder vessel was designed for applying blast loading, in which an explosive charge was ignited to generate blast loading acting on a thin metal circular plate clamped on the end of the vessel by a cover flange. The images of the metal plates during the dynamic response were recorded by two high-speed cameras. The 3D transient displacement fields, velocity fields, strain fields and residual deformation profiles were calculated by using 3D DIC. Some feature deformation parameters including maximum out-of-plane displacement, final deflection, maximum principal strain and residual principal strain were extracted, and the result was in good agreement with that simulated by AUTODYN. A dimensionless displacement was introduced to analyse the effects of plate thickness, material types and charge mass on the deflection of metal plates. DIC is also proven to be a powerful technique to measure dynamic deformation under blast loading

    A review of physical supply and EROI of fossil fuels in China

    Get PDF
    This paper reviews China’s future fossil fuel supply from the perspectives of physical output and net energy output. Comprehensive analyses of physical output of fossil fuels suggest that China’s total oil production will likely reach its peak, at about 230 Mt/year (or 9.6 EJ/year), in 2018; its total gas production will peak at around 350 Bcm/year (or 13.6 EJ/year) in 2040, while coal production will peak at about 4400 Mt/year (or 91.9 EJ/year) around 2020 or so. In terms of the forecast production of these fuels, there are significant differences among current studies. These differences can be mainly explained by different ultimately recoverable resources assumptions, the nature of the models used, and differences in the historical production data. Due to the future constraints on fossil fuels production, a large gap is projected to grow between domestic supply and demand, which will need to be met by increasing imports. Net energy analyses show that both coal and oil and gas production show a steady declining trend of EROI (energy return on investment) due to the depletion of shallow-buried coal resources and conventional oil and gas resources, which is generally consistent with the approaching peaks of physical production of fossil fuels. The peaks of fossil fuels production, coupled with the decline in EROI ratios, are likely to challenge the sustainable development of Chinese society unless new abundant energy resources with high EROI values can be found

    Nicotine Overrides DNA Damage-Induced G1/S Restriction in Lung Cells

    Get PDF
    As an addictive substance, nicotine has been suggested to facilitate pro-survival activities (such as anchorage-independent growth or angiogenesis) and the establishment of drug resistance to anticancer therapy. Tobacco smoking consists of a variety of carcinogens [such as benzopyrene (BP) and nitrosamine derivatives] that are able to cause DNA double strand breaks. However, the effect of nicotine on DNA damage-induced checkpoint response induced by genotoxins remains unknown. In this study, we investigated the events occurred during G1 arrest induced by γ-radiation or BP in nicotine-treated murine or human lung epithelial cells. DNA synthesis was rapidly inhibited after exposure to γ-radiation or BP treatment, accompanied with the activation of DNA damage checkpoint. When these cells were co-treated with nicotine, the growth restriction was compromised, manifested by upregulation of cyclin D and A, and attenuation of Chk2 phosphorylation. Knockdown of cyclin D or Chk2 by the siRNAs blocked nicotine-mediated effect on DNA damage checkpoint activation. However, nicotine treatment appeared to play no role in nocodazole-induced mitotic checkpoint activation. Overall, our study presented a novel observation, in which nicotine is able to override DNA damage checkpoint activated by tobacco-related carcinogen BP or γ-irradiation. The results not only indicates the potentially important role of nicotine in facilitating the establishment of genetic instability to promote lung tumorigenesis, but also warrants a dismal prognosis for cancer patients who are smokers, heavily exposed second-hand smokers or nicotine users

    Decay widths of the spin-2 partners of the X(3872)

    Get PDF
    We consider the X(3872) resonance as a JPC=1++ DD¯∗ hadronic molecule. According to heavy quark spin symmetry, there will exist a partner with quantum numbers 2++, X2, which would be a D∗D¯∗ loosely bound state. The X2 is expected to decay dominantly into DD¯, DD¯∗ and D¯D∗ in d-wave. In this work, we calculate the decay widths of the X2 resonance into the above channels, as well as those of its bottom partner, Xb2, the mass of which comes from assuming heavy flavor symmetry for the contact terms. We find partial widths of the X2 and Xb2 of the order of a few MeV. Finally, we also study the radiative X2→DD¯∗γ and Xb2→B¯B∗γ decays. These decay modes are more sensitive to the long-distance structure of the resonances and to the DD¯∗ or BB¯∗ final state interaction

    Effect of Aspect Ratio on Field Emission Properties of ZnO Nanorod Arrays

    Get PDF
    ZnO nanorod arrays are prepared on a silicon wafer through a multi-step hydrothermal process. The aspect ratios and densities of the ZnO nanorod arrays are controlled by adjusting the reaction times and concentrations of solution. The investigation of field emission properties of ZnO nanorod arrays revealed a strong dependency on the aspect ratio and their density. The aspect ratio and spacing of ZnO nanorod arrays are 39 and 167 nm (sample C), respectively, to exhibit the best field emission properties. The turn-on field and threshold field of the nanorod arrays are 3.83 V/μm and 5.65 V/μm, respectively. Importantly, the sample C shows a highest enhancement of factorβ, which is 2612. The result shows that an optimum density and aspect ratio of ZnO nanorod arrays have high efficiency of field emission

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Expression of IMP1 Enhances Production of Murine Leukemia Virus Vector by Facilitating Viral Genomic RNA Packaging

    Get PDF
    Murine leukemia virus (MLV)-based retroviral vector is widely used for gene transfer. Efficient packaging of the genomic RNA is critical for production of high-titer virus. Here, we report that expression of the insulin-like growth factor II mRNA binding protein 1 (IMP1) enhanced the production of infectious MLV vector. Overexpression of IMP1 increased the stability of viral genomic RNA in virus producer cells and packaging of the RNA into progeny virus in a dose-dependent manner. Downregulation of IMP1 in virus producer cells resulted in reduced production of the retroviral vector. These results indicate that IMP1 plays a role in regulating the packaging of MLV genomic RNA and can be used for improving production of retroviral vectors

    Effects of EGR rate on performance and emissions of a diesel power generator fueled by B7

    Get PDF
    This paper analyses the impacts of the application of an exhaust gas recirculation (EGR) system on the performance and emissions of a stationary, direct-injection diesel engine operating with diesel oil containing 7% biodiesel (B7). Experiments were carried out in a 49-kW diesel power generator with the adapted EGR system, and engine performance and emissions were evaluated for different load and EGR settings. The results were compared with the engine operating with its original configuration without the EGR system, and revealed a reduction of peak cylinder pressure and fuel conversion efficiency, mainly at high engine loads. The use of EGR caused opposite effects on carbon dioxide (CO2), carbon monoxide (CO) and total hydrocarbons (THC) emissions, depending on load and EGR rate, showing an increase in most situations. The application of EGR consistently reduced oxides of nitrogen (NOX) emissions, reaching a maximum reduction close to 30%. In general, the use of EGR increased CO2, CO and THC emissions at high loads. The use of 7.5% EGR was found to be at an adequate rate to simultaneously reduce CO, THC and NOX emissions at low and moderate loads, without major penalties on CO2 emissions and engine performance

    Structural and Functional Characterization of Mature Forms of Metalloprotease E495 from Arctic Sea-Ice Bacterium Pseudoalteromonas sp. SM495

    Get PDF
    E495 is the most abundant protease secreted by the Arctic sea-ice bacterium Pseudoalteromonas sp. SM495. As a thermolysin family metalloprotease, E495 was found to have multiple active forms in the culture of strain SM495. E495-M (containing only the catalytic domain) and E495-M-C1 (containing the catalytic domain and one PPC domain) were two stable mature forms, and E495-M-C1-C2 (containing the catalytic domain and two PPC domains) might be an intermediate. Compared to E495-M, E495-M-C1 had similar affinity and catalytic efficiency to oligopeptides, but higher affinity and catalytic efficiency to proteins. The PPC domains from E495 were expressed as GST-fused proteins. Both of the recombinant PPC domains were shown to have binding ability to proteins C-phycocyanin and casein, and domain PPC1 had higher affinity to C-phycocyanin than domain PPC2. These results indicated that the domain PPC1 in E495-M-C1 could be helpful in binding protein substrate, and therefore, improving the catalytic efficiency. Site-directed mutagenesis on the PPC domains showed that the conserved polar and aromatic residues, D26, D28, Y30, Y/W65, in the PPC domains played key roles in protein binding. Our study may shed light on the mechanism of organic nitrogen degradation in the Arctic sea ice

    The influence of macrophytes on sediment resuspension and the effect of associated nutrients in a shallow and large lake (Lake Taihu, China)

    Get PDF
    A yearlong campaign to examine sediment resuspension was conducted in large, shallow and eutrophic Lake Taihu, China, to investigate the influence of vegetation on sediment resuspension and its nutrient effects. The study was conducted at 6 sites located in both phytoplankton-dominated zone and macrophyte-dominated zone of the lake, lasting for a total of 13 months, with collections made at two-week intervals. Sediment resuspension in Taihu, with a two-week high average rate of 1771 g.m(-2).d(-1) and a yearly average rate of 377 g.m(-2).d(-1), is much stronger than in many other lakes worldwide, as Taihu is quite shallow and contains a long fetch. The occurrence of macrophytes, however, provided quite strong abatement of sediment resuspension, which may reduce the sediment resuspension rate up to 29-fold. The contribution of nitrogen and phosphorus to the water column from sediment resuspension was estimated as 0.34 mg.L-1 and 0.051 mg.L-1 in the phytoplankton-dominated zone. Sediment resuspension also largely reduced transparency and then stimulated phytoplankton growth. Therefore, sediment resuspension may be one of the most important factors delaying the recovery of eutrophic Lake Taihu, and the influence of sediment resuspension on water quality must also be taken into account by the lake managers when they determine the restoration target.Peer reviewe
    corecore